CURSO: Engenharia Mecânica		
UNIDADE CURRICULAR: Eletromagnetismo		Código: CEM.018
PERÍODO LETIVO: 3º	CARGA HORÁRIA: 90 h	

OBJETIVOS

GERAL: Relacionar fenômenos naturais com os princípios e leis físicas que os regem; utilizar a representação matemática das leis físicas como instrumento de análise e predição das relações entre grandezas e conceitos; aplicar os princípios e leis físicas na solução de problemas práticos.

ESPECÍFICOS: Relacionar matemáticamente fenômenos físicos; resolver problemas de engenharia e ciências físicas; realizar experimentos com medidas de grandezas físicas; analisar e interpretar gráficos e tabelas relacionadas a grandezas físicas.

EMENTA: Parte teoria: carga elétrica; lei de coulomb; o campo elétrico; a lei de gauss; o potencial elétrico; energia potencial elétrica; propriedades elétricas dos materiais; resistência elétrica; lei de ohm; capacitância; corrente elétrica e circuito de corrente contínua; instrumentos de corrente contínua; força eletro-motriz; associação de resistores; o campo magnético; lei de indução de faraday; lei de lenz; geradores e motores; propriedades magnéticas dos materiais; a lei de ampère; indutância; propriedades magnéticas da matéria; correntes alternadas e equações de maxwell. Parte prática: potencial elétrico; lei de ohm; lei de indução; transformador.

PRÉ-REQUISITOS:

CONTEÚDOS	СН
LEI DE COULOMB: carga elétrica; condutores e isolantes; a lei de Coulomb; distribuição contínua de cargas; conservação da carga.	4h
CAMPO ELÉTRICO: conceito de campo; o campo elét0rico; campo elétrico de cargas pontuais; campo elétrico de distribuições contínuas; linhas de campo elétrico; uma carga pontual em um campo elétrico; dipolo elétrico.	8h
LEI DE GAUSS: o fluxo de um campo vetorial; o fluxo de um campo elétrico; a lei de Gauss; aplicações da lei de Gauss; condutores; testes experimentais da lei de Gauss.	8h
ENERGIA POTENCIAL ELÉTRICA E POTENCIAL ELÉTRICO: energia potencial; energia potencial elétrica; potencial elétrico; cálculo do potencial elétrico através do campo elétrico; potencial devido a cargas pontuais; potencial elétrico devido a distribuição contínua de cargas; cálculo do campo elétrico através do potencial elétrico; superfícies equipotenciais; potencial de um condutor carregado.	8h
PROPRIEDADES ELÉTRICAS DOS MATERIAIS: tipos de materiais; condutor em um campo elétrico: condições estáticas e dinâmicas; materiais ôhmicos; lei de Ohm; isolante em um campo elétrico.	6h
CAPACITÂNCIA: capacitores; capacitância; cálculo de capacitância; capacitores em série e em paralelo; armazenamento de energia em um campo elétrico; capacitor com dielétrico.	6h
CIRCUITOS DE CORRENTE CONTÍNUA: corrente elétrica; força eletromotriz; análise de circuitos; campos elétricos em circuitos; resistores em série e em paralelo; transferência de energia em um circuito elétrico; circuitos RC.	6h
CAMPO MAGNÉTICO: interações magnéticas e pólos magnéticos; força magnética sobre uma carga em movimento; cargas em movimento circular; o efeito Hall; força magnética sobre um fio conduzindo uma corrente; torque sobre uma espira de corrente.	6h

CAMPO MAGNÉTICO DE UMA CORRENTE: campo magnético devido a uma carga em movimento; campo magnético de uma corrente; duas correntes paralelas; campo magnético de um solenóide; lei de Ampère.	6h
LEI DE INDUÇÃO DE FARADAY: os experimentos de Faraday; lei de indução de Faraday; lei de Lenz; fem de movimento; geradores e motores; campos elétricos induzidos.	8h
PROPRIEDADES MAGNÉTICAS DOS MATERIAIS: dipolo magnético; força sobre um dipolo em um campo não-uniforme; magnetismo atômico e nuclear; magnetização; materiais magnéticos.	6h
INDUTÂNCIA: indutância; cálculo de indutância; circuitos RL; energia armazenada em um campo magnético; oscilações eletromagnéticas.	6h
CIRCUITOS DE CORRENTE ALTERNADA: correntes alternadas; três elementos separados: resistivo, indutivo e capacitivo; circuito rlc de malha única; potência em circuitos CA; transformador.	6h

ESTRATÉGIA DE APRENDIZAGEM: Aulas Expositivas Interativas; Estudo em grupo com apoio de bibliografias; Aplicação de lista de exercícios; Atendimento individualizado.

RECURSOS METODOLÓGICOS: Quadro branco, retroprojetor e projetor de multimídia.

AVALIAÇÃO DA APRENDIZAGEM:

CRITÉRIOS: Observação do desempenho individual verificando se o aluno identificou, sugeriu e assimilou as atividades solicitadas de acordo com as técnicas de aprendizagem previstas.

INSTRUMENTOS: Provas, listas de exercícios e trabalhos envolvendo estudos de caso.

Bibliografia Básica (títulos, periódicos, etc.)

Título/Periódico	Autor	Edição	Local	Editora	Ano
Eletromagnetismo para engenheiros	Ulaby, Fawwaz T.	1ª	Porto Alegre	Bookman	2006
Fundamentos de Física - Vol 3: Eletromagnetismo	Halliday, David; Resnick, Robert; Walker, Jearl	8ª	Rio de Janeiro	LTC	2009
Física para Cientistas e Engenheiros – Vol. 2	Tipler, Paul A.; Mosca, Gene	5ª	Rio de Janeiro	LTC	2006

Bibliografia Complementar (títulos, periódicos, etc.)

Título/Periódico	Autor	Edição	Local	Editora	Ano
Curso de Física Básica – 3 Eletromagnetismo	H. Moysés Nussenzveig	4 ^a	São Paulo	Edgard Blücher	2002
Física III - Eletromagnetismo	Young, H., D. e Freedman, R., A.	12ª	São Paulo	Pearson	2009
Princípios de Física - Eletromagnetismo - Volume 3	Serway, R., A. e Jewett Jr., J. W.		São Paulo	Cengage Learning	2004
Fundamentos da Teoria Eletromagnética	Reitz, J., R.; Milford, F., J. e Christy, R., W.	1 ^a		Campus- Elsevier	1982
Eletromagnetismo	Hayt Jr., W., H.	7 ^a		Mcgraw-Hill	2008
				Brasil	