Curso: ENGENHARIA MECÂNICA	
Unidade Curricular: FÍSICA GERAL III	
Professor(es): Thomaz Rodrigues Botelho	
Período Letivo: 3°	Carga Horária: 90 horas (75 teóricas/15 práticas)

OBJETIVOS

Geral:

Relacionar fenômenos naturais com os princípios e leis físicas que os regem. Utilizar a representação matemática das leis físicas como instrumento de análise e predição das relações entre grandezas e conceitos. Aplicar os princípios e leis físicas na solução de problemas práticos.

Específicos:

- Relacionar matematicamente fenômenos físicos;
- Resolver problemas de engenharia e ciências físicas;
- Realizar experimentos com medidas de grandezas físicas;
- Analisar e interpretar gráficos e tabelas relacionadas a grandezas físicas.

EMENTA

Teoria: carga elétrica; lei de coulomb; o campo elétrico; a lei de Gauss; o potencial elétrico; energia potencial elétrica; propriedades elétricas dos materiais; resistência elétrica; lei de Ohm; capacitância; corrente elétrica e circuito de corrente contínua; instrumentos de corrente contínua; força eletro-motriz; associação de resistores; o campo magnético; lei de indução de Faraday; lei de Lenz; geradores e motores; propriedades magnéticas dos materiais; a lei de Ampère; indutância; propriedades magnéticas da matéria; correntes alternadas e equações de Maxwell.

Prática: potencial elétrico; lei de ohm; lei de indução; transformador.

PRÉ-REQUISITO (SE HOUVER)

Cálculo II.

CONTEÚDOS	Carga Horária
UNIDADE I: A LEI DE COULOMB	
1.1 Carga elétrica;	
1.2 Condutores e isolantes;	4
1.3 A lei de Coulomb;	
1.4 Distribuição contínua de cargas;	
1.5 Conservação da carga.	
UNIDADE II: O CAMPO ELÉTRICO	
2.1 Conceito de campo;	
2.2 O campo elétrico;	
2.3 Campo elétrico de cargas pontuais;	7
2.4 Campo elétrico de distribuições contínuas;	
2.5 Linhas de campo elétrico;	
2.6 Uma carga pontual em um campo elétrico;	

2.7 Dipolo elétrico.	
UNIDADE III: A LEI DE GAUSS	
3.1 O fluxo de um campo vetorial;	
3.2 O fluxo de um campo elétrico;	
3.3 A lei de Gauss;	8
3.4 Aplicações da lei de Gauss;	
3.5 Condutores;	
3.6 Testes experimentais da lei de Gauss.	
UNIDADE IV: ENERGIA POTENCIAL ELÉTRICA E POTENCIAL ELÉTRICO	
4.1 Energia potencial;	
4.2 Energia potencial elétrica;	
4.3 Potencial elétrico;	
4.4 Cálculo do potencial elétrico através do campo elétrico;	8
4.5 Potencial devido a cargas pontuais;	o
4.6 Potencial elétrico devido a distribuição contínua de cargas;	
4.7 Cálculo do campo elétrico através do potencial elétrico;	
4.8 Superficies equipotenciais;	
4.9 Potencial de um condutor carregado.	
UNIDADE V: AS PROPRIEDADES ELÉTRICAS DOS MATERIAIS	
5.1 Tipos de materiais;	
5.2 Condutor em um campo elétrico: condições estáticas e dinâmicas;	_
5.3 Materiais ôhmicos;	5
5.4 Lei de Ohm;	
5.5 Isolante em um campo elétrico.	
UNIDADE VI: CAPACITÂNCIA	
6.1 Capacitores;	
6.2 Capacitância;	
6.3 Cálculo de capacitância;	5
6.4 Capacitores em série e em paralelo;	
6.5 Armazenamento de energia em um campo elétrico;	
6.6 Capacitor com dielétrico.	
UNIDADE VII: CIRCUITOS DE CORRENTE CONTÍNUA	
7.1 Corrente elétrica;	
7.2 Força eletromotriz;	
7.3 Análise de circuitos;	5
7.4 Campos elétricos em circuitos;	,
7.5 Resistores em série e em paralelo;	
7.6 Transferência de energia em um circuito elétrico;	
7.7 Circuitos RC.	

UNIDADE VIII: O CAMPO MAGNÉTICO	
8.1 Interações magnéticas e pólos magnéticos;	
8.2 Força magnética sobre uma carga em movimento;	
8.3 Cargas em movimento circular;	5
8.4 O efeito hall;	
8.5 Força magnética sobre um fio conduzindo uma corrente;	
8.6 Torque sobre uma espira de corrente.	
UNIDADE IX: O CAMPO MAGNÉTICO DE UMA CORRENTE	
9.1 Campo magnético devido a uma carga em movimento;	
9.2 Campo magnético de uma corrente;	5
9.3 Duas correntes paralelas;	5
9.4 Campo magnético de um solenoide;	
9.5 Lei de Ampère.	
UNIDADE X: A LEI DE INDUÇÃO DE FARADAY	
10.1 Os experimentos de Faraday;	
10.2 Lei de indução de Faraday;	
10.3 Lei de lenz;	8
10.4 F.e.m. de movimento;	
10.5 Geradores e motores;	
10.6 Campos elétricos induzidos.	
UNIDADE XI: PROPRIEDADES MAGNÉTICAS DOS MATERIAIS	
11.1 O dipolo magnético;	
11.2 A força sobre um dipolo em um campo não-uniforme;	5
11.3 Magnetismo atômico e nuclear;	5
11.4 Magnetização;	
11.5 Materiais magnéticos.	
UNIDADE XII: INDUTÂNCIA	
12.1 Indutância;	
12.2 Cálculo de indutância;	5
12.3 Circuitos rl;	5
12.4 Energia armazenada em um campo magnético;	
12.5 Oscilações eletromagnéticas.	
UNIDADE XIII: CIRCUITOS DE CORRENTE ALTERNADA	
13.1 Correntes alternadas;	
13.2 três elementos separados: resistivo, indutivo e capacitivo;	5
13.3 Circuito RLC de malha única;	5
13.4 Potência em circuitos ca;	
13.5 O transformador.	

UNIDADE XIV: ATIVIDADES DE LABORATÓRIO	15
Total	90

METODOLOGIA

Aula expositiva dialogada, estudos de caso retirados de revistas/artigos/livros; seminário, painel de discussão, exercícios sobre os conteúdos; discussão em pequenos grupos.

RECURSOS

Kit multimídia, revistas; textos, quadro branco, softwares, laboratório.

AVALIAÇÃO DA APRENDIZAGEM

Critérios

A avaliação será processual, observando a participação ativa dos alunos nas aulas, execução das atividades solicitadas, apresentação e participação no seminário e painel de discussão; contribuições nas discussões ocorridas em pequeno grupo e sala de aula; pontualidade na entrega das atividades, utilizando como parâmetro o objetivo geral e os objetivos específicos da disciplina.

Instrumentos

- Avaliação escrita (testes e provas);
- Trabalhos individuais e em grupos;
- Exercícios;
- Apresentações orais;
- Participação em debates.
- Atividades de laboratório

BIBLIOGRAFIA BÁSICA

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl (Colab.). **Fundamentos de física**: eletromagnetismo, volume 3. 8. ed. Rio de Janeiro: LTC- Livros Técnicos e Científicos, 2009.

TIPLER, Paul Allen; MOSCA, Gene. **Física para cientistas e engenheiros**: volume 2, eletricidade e magnetismo, óptica. 6. ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos, 2009.

NUSSENZVEIG, H. Moysés. Curso de física básica 3: eletromagnetismo. 1. ed. São Paulo: E. Blücher, 1997.

BIBLIOGRAFIA COMPLEMENTAR

SERWAY, Raymond A.; JEWETT, John W. **Princípios de física**: volume 3. São Paulo: Cengage Learning, 2004.

YOUNG, Hugh D.; FREEDMAN, Roger A. **Física III**: eletromagnetismo. 12. ed. São Paulo: Pearson Addison Wesley, 2009.

HAYT, William Hart; BUCK, John A. Eletromagnetismo. 8. ed. Porto Alegre: AMGH, 2013.